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Summary

This paper studies a bearing-only–based formation control problem for a
group of single-integrator agents with directed cycle sensing topology. In a
2-dimensional space, a necessary and sufficient condition for the set of desired
bearing vectors to be feasible is derived. Then, we propose a bearing-only con-
trol law for every agent and prove that the formation asymptotically converges
to a formation specified by a set of feasible desired bearing vectors. Analysis of
the equilibrium formations in the plane for a 3-agent system and subsequent
extension to an n-agent system is provided. We further extend the analysis on
directed triangular formation into a 3-dimensional space. Finally, simulations
validate the theoretical results.
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1 INTRODUCTION

Formation control is a widely studied topic in the domain of multiagent systems.1-5 Based on the sensed and controlled
variables, Oh et al6 classified formation control problems into position-based, displacement-based, distance-based, and
bearing-based setups. Recently, as vision sensors and vision-based techniques are becoming ubiquitous, bearing-based
formation control has generated a lot of research interest.7-10

In bearing-based formation control problems, a group of autonomous agents is required to achieve a target formation
shape defined by some bearing variables. These variables are known as the subtended bearing angles or the relative bear-
ing vectors.11 In previous works,7,8,12 formation stabilization control laws, using only the bearing angles, were proposed for
3- and 4-agent systems. In the work of Zhao et al,13 an n-agent formation with an undirected cycle graph was investigated
by controlling the subtended bearings. Since the target formation defined by n subtended bearing angles is nonunique,
the stability of the equilibrium formation holds only in a local sense.13 A sufficient condition for the uniqueness of a for-
mation configuration, defined by the bearing vectors, was studied in the work of Zhao and Zelazo.14 It was shown that a
formation shape is unique if it is infinitesimal bearing rigid. Furthermore, Zhao and Zelazo14 also proposed a bearing-only
control law that almost globally stabilizes any infinitesimally bearing rigid equilibrium formation. Bearing rigidity the-
ories in SE(2) and SE(3) are recently proposed in the works of Zelazo et al,15 Schiano et al,16 and Michieletto et al.17

Strategies for formation control and estimation were also proposed in the works of Zelazo et al15 and Schiano et al,16

assuming that agents can exchange their local sensing information and computations.
While bearing-only formation control problem with undirected sensing graphs has been studied in some detail,9,14

results on bearing-only formation control with directed sensing graphs are rare. In previous works,18-20 the leader-first
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follower formation has been studied using the notion of input-to-state stability. In the works of Zhao and Zelazo,21,22 a
directed topology was considered and sufficient conditions for the stability of the formations were derived. However,
relative position information was also used therein. In fact, investigation of stable bearing-only formation control over a
general directed sensing topology is still an open problem.

This paper mainly focuses on a bearing-only formation control problem with a directed cycle sensing graph. More
specifically, the n-agent formation in the plane and a 3-agent formation in the 3-dimensional space with directed cycles
sensing graphs are studied. First, we derive necessary and sufficient conditions for planar formation feasibility in terms of
some algebraic constraints on the set of desired bearing vectors. Second, we propose a bearing-only control law, for agents
in cyclic pursuit, to achieve some desired formation and examine the possible equilibrium formations under this law. By
classifying these equilibria into the set of desired equilibria and the set of undesired ones, local properties of the equilibria
in each set are investigated. Third, by transforming the dynamics of the agents from the position variables to the angular
errors, we prove local asymptotic stability of the desired equilibrium and provide an estimate of the corresponding region
of attraction. The 3-agent formation is studied in detail since its sensing graph is the only one in this class satisfying the
infinitesimal rigidity condition. The analysis of the n−agent case is then given as a natural extension of the 3-agent sce-
nario. Finally, we extend the analysis on directed triangular formations to 3 dimensions. Although formations of directed
cycles with more than 3 agents in R2 are not bearing rigid, studying directed cycles may aid in a better understanding of
stabilizing formations with general digraphs. Another motivation comes from hardware implementability of the forma-
tion, where each agent has a limited vision-based sensing capability. Suppose we have a system of drones and each drone is
equipped with a camera-based vision system. To obtain the bearing vector, each drone must detect its neighboring agents
based on the image obtained from the camera. Since the detecting task may be challenging because of environmental
noises and obstacles, it is desired to limit the number of neighbors that needs to be kept track of in the sensing graph. The
directed cycle is a strongly connected graph with the least number of edges and is thus easier to implement on hardware.
Note that a related study of bearing-only cyclic pursuit for target capture can be found in our previous works.23,24 In the
aforementioned works,23,24 under the assumption that all agents in cyclic pursuit can also sense the bearing with respect
to a stationary target, the formation shape is uniquely determined up to a scaling factor. However, we23,24 presented no
analysis on asymptotic stability of these formations. The problem considered in this paper is related to cyclic pursuit25-30

(in which the interaction topology is also described by a cycle graph) and bearing-only localization problems.31-33 How-
ever, this paper attempts to study a bearing-only–based formation control problem with directed cycle sensing graphs.
To the best of our knowledge, this problem has not been studied in the existing literature. Furthermore, the necessary
and sufficient condition for formation feasibility, discussed in this work, is novel. Finally, our analysis on directed trian-
gular formations in the 3-dimensional space is also a new contribution since almost all previous works mostly focus on
2-dimensional setups.

The remainder of this paper is organized in the following manner. In Section 2, some preliminary results on bearing-only
formation are described and the main problem is formulated. Section 3 presents the main stability results pertaining to
bearing-only formation control using cyclic pursuit in the plane. Section 4 extends the analysis of directed triangular
formations to the 3-dimensional space. In Section 5, simulations validate the theoretical developments. Finally, Section 6
concludes this paper and outlines directions for future investigations.

2 PROBLEM FORMULATION AND THE PROPOSED CONTROL LAW

2.1 Problem formulation
Consider a formation of n (n ≥ 3) autonomous agents in Rd (d = 2 or 3 and will be clear from the context). The dynamics
of each agent is given by a single-integrator model

ṗi = ui,∀i = 1, … ,n, (1)

where pi and ui ∈ Rd are the position and the control inputs of agent i expressed in the global coordinate frame,
respectively.

We use directed graphs to describe the sensing and controlling topology between agents in the formation.29,34 A directed
graph is described by  = ( , ), where  = {1, … ,n} is the set of nodes and  = {(i, j)|i, j ∈ } is the set of directed
edges. A node j is called a neighbor of node i if and only if (i, j) ∈  . Let i denote the set of neighbor nodes of i. A directed
cycle with n nodes (and n edges), denoted by n, is a directed graph, where node i + 1 (modulo n) is the only neighbor of
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1076 TRINH ET AL.

FIGURE 1 A directed cycle graph with 6 nodes

FIGURE 2 Both configurations A, and B, satisfy all desired bearing vectors g∗i , i = 1, … , 4, but are not similar

node i, ie, i = {i + 1(modulo n)}. A directed cycle of 6 nodes is illustrated in Figure 1. We define the relative position
vector as zi = pi+1 − pi, for i = 1, … ,n. The variable zi is sometimes referred to as the edge (i, i + 1) in the Euclidean
space. Furthermore, di = ||zi|| is the distance between the 2 agents i and i + 1. In addition, let the absolute and relative
positions be stacked as vectors p =

[
pT

1 , … ,pT
n
]T ∈ Rdn and z =

[
zT

1 , … , zT
n
]T ∈ Rdn, respectively.

Assume that agent i can measure the bearing with respect to agent i+1 (modulo n). Based on the bearing measurement,
agent i can obtain the relative bearing vector35

gi =
pi+1 − pi||pi+1 − pi|| = zi||zi|| . (2)

The unit vector gi contains the direction information from agent i to agent i + 1. Suppose agent i also knows a desired
bearing vector g∗i and the control objective is to asymptotically reduce the bearing error between gi and g∗i to zero. The
following definition describes admissible desired bearings.

Definition 1. The set n = {g∗i }i∈ is called a feasible bearing vector set if and only if, for each i ∈  , g∗i ≠ ±g∗i+1 and
there exist strictly positive scalars di such that

∑n
i=1 dig∗i = 0.

It follows from Definition 1 that, when the desired bearing vectors belong to set n, there do not exist 3 consecutive
agents i− 1, i and i+ 1 whose desired positions are collinear. The condition

∑n
i=1 dig∗i = 0 implies that the desired forma-

tion of the agents is a closed polygon because each vector of the form dig∗i is essentially an edge of the desired polygon,
connecting agents i and i + 1, with g∗i being the desired bearing of agent i with respect to its leader, ie, agent i + 1. The
scalar di is the length of the edge between agents i and i + 1 and is thus the distance between agents i and i + 1 in the
Euclidean space corresponding to a feasible formation.

For n = 3, every triangular formation satisfying a given desired bearing configuration in 3 is related by translations
and a dilation to another feasible formation. For n > 3, this property is generally not true. To see this, consider a 4-agent
formation, as shown in Figure 2, which depicts 2 configurations in R2 with sensing graph 4. The desired bearing vectors
are given by g∗1 = [1, 0]

T , g∗2 = [0, 1]
T , g∗3 = [−1, 0]T , and g∗4 = [0,−1]T . Although both Figures 2A and 2B satisfy the desired

bearings, the formation shapes are not similar. Similarity between formations can only be achieved if the infinitesimal
bearing rigidity conditions in the work of Zhao and Zelazo14 are satisfied. However, for n > 3, such conditions do not hold
for a cycle digraph, so the formation shape is not fixed for a given set of desired bearing vectors.

In R2, we define g⟂
i = Jgi =

[
0 −1
1 0

]
gi as the unit vector perpendicular to gi in the counterclockwise direction. Note

that JT = −J. The following result characterizes a condition for feasibility of a set n in R2.

Lemma 1. In R2, the set n is a feasible bearing vector set if and only if, for all i ∈  , g∗i ≠ ±g∗i+1, and there exist
j, k ∈ ∖{i} such that (g∗j )

Tg∗⟂i < 0 and (g∗k)
Tg∗⟂i > 0.
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TRINH ET AL. 1077

Proof. (Necessity) Suppose n is a feasible bearing vector set. There exist positive scalars di such that
n∑

i=1
dig∗i = 0. (3)

We shall prove that there exist j, k ∈ ∖{i} such that (g∗j )
Tg∗⟂i < 0 and (g∗k)

Tg∗⟂i > 0 by contradiction.
Suppose there does not exist any j ∈ ∖{i} such that (g∗j )

Tg∗⟂i < 0. Then, rewriting Equation 3 as

− 1
di

n∑
l≠i,l=1

dlg∗l = g∗i (4)

and premultiplying both sides of Equation 4 with (g∗⟂i )
T , we have

− 1
di

n∑
l≠i,l=1

dl
(
g∗⟂i

)Tg∗l =
(
g∗⟂i

)Tg∗i = 0. (5)

Since (g∗⟂i )
Tg∗l ≥ 0, for all l ≠ i, the left-hand side of Equation 5 is nonpositive. In fact, since g∗i+1 ≠ ±g∗i , we have

(g∗⟂i )
Tg∗i+1 ≠ 0, which implies that the left-hand side of Equation 5 is negative. However, the right-hand side of

Equation 5 is zero. This contradiction implies that there exists at least one j ∈ ∖{i} such that (g∗j )
Tg∗⟂i < 0. Similarly,

the existence of at least some k ∈ ∖{i} such that (g∗k)
Tg∗⟂i > 0 is also necessary for a feasible bearing set.

(Sufficiency) Suppose that, for all i ∈  , g∗i ≠±g∗i+1, and there are j, k ∈ ∖{i} suchthat (g∗j )
Tg∗⟂i < 0 and (g∗k)

Tg∗⟂i > 0.
We shall prove that there exist positive scalars di such that Equation 3 is satisfied. The proof contains the follow-
ing steps.

Step 1: If g∗k ≠ −g∗j , we go to Step 2. Otherwise, if g∗k = −g∗j , we shall show that there exists l ∈ ∖{i, j, k} such
that g∗l ≠ ±g∗j . Suppose that there does not exist such an l; then, (g∗m)Tg∗⟂j = 0 for all m ∈ ∖{i, j} and
(g∗i )

Tg∗⟂j = −(g∗j )
Tg∗⟂i > 0. Thus, there does not exist any vector g∗m ∈ n such that (g∗m)Tg∗⟂j < 0, which

contradicts the sufficiency assumption. This contradiction implies the existence of l ∈ ∖{i, j, k} such that
g∗l ≠ ±g∗j and (g∗l )

Tg∗⟂j < 0. There are 3 possibilities as follows. (i) (g∗l )
Tg∗⟂i < 0, we re-index j ↔ l, and move

to Step 2. (ii) (g∗l )
Tg∗⟂i > 0, we re-index k ↔ l, and move to Step 2. (iii) (g∗l )

Tg∗⟂i = 0, ie, g∗l = ±g∗i . Because
(g∗l )

Tg∗⟂j < 0 and (g∗i )
Tg∗⟂j > 0, we have g∗l = −g∗i . Choosing di = dl = 1, we write

g∗i + g∗l = 0 (6)

and move to Step 3.
Step 2: Since g∗j ≠ −g∗k, 2 linearly independent vectors g∗j and g∗k form a basis for R2. Thus, we can write

g∗i = m1g∗j +m2g∗k, (7)

where m1 and m2 are scalars. Premultiplying both sides of the above equation with (g∗⟂i )
T yields 0 =

m1(g∗⟂i )
Tg∗j +m2(g∗⟂i )

Tg∗k. Thus,

m2 = m1

(
−
(
g∗⟂i

)Tg∗j
)/((

g∗⟂i
)Tg∗k

)
,

which implies that sgn(m1) = sgn(m2). Thus, there are 2 cases as follows.

• Case 1: m1 < 0, m2 < 0. Thus, we can write g∗i + r1g∗j + r2g∗k = 0, where r1 = −m1 > 0 and
r2 = −m2 > 0.

• Case 2: m1 > 0, m2 > 0. In this case, we will prove that there always exist at least 2 vectors g∗j1
,

g∗k1
, j1, k1 ∈ ∖{i} such that g∗i + r1g∗j1

+ r2g∗k1
= 0, where r1 > 0, r2 > 0.

In fact, the 2 vectors g∗i and g∗⟂i separate the plane into 4 regions, ie, regions I to IV, as shown
in Figure 3. If there does not exist even a single such pair j1 and k1, from Equation 7, all desired
bearing vectors must be contained in 2 regions, ie, regions I and IV. Then, we can choose the
index l corresponding to the vector g∗l such that it minimizes the inner product (g∗l )

Tg∗⟂i (which
is clearly negative from the assumption of the sufficiency proof). It follows that, for any vector
g∗k ∈ n, there are c1, c2 ≥ 0 such that g∗k = c1g∗l + c2g∗⟂i and(

g∗k
)Tg∗⟂l =

(
c1g∗l + c2g∗⟂i

)Tg∗⟂l = c2
(
g∗⟂i

)Tg∗⟂l = c2
(
g∗i
)TJTJg∗l = c2

(
g∗i
)Tg∗l ≥ 0.
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1078 TRINH ET AL.

FIGURE 3 Four regions separated by 2 lines containing 2 vectors g∗i and g∗⟂i

Thus, there does not exist any g∗k ∈ n such that (g∗k)
Tg∗⟂l < 0. This contradicts our assumption,

and thus, there must exist j1, k1 ∈ ∖{i} such that g∗i + r1g∗j1 + r2g∗k1 = 0, where r1, r2 > 0.

From both cases, it follows that, for any g∗i , we can always find 2 vectors g∗j and g∗k and scalars r1, r2 > 0 such
that

g∗i + r1g∗j + r2g∗k = 0. (8)

Step 3: Taking the summation over all i as expressed in the form of Equations 6 and 8, we obtain an expression in
the form of Equation 3, which concludes the proof.

In this paper, the control objective for the general n−agent scenario is to achieve a formation that satisfies a given set of
desired bearings for the agents and not necessarily a fixed shape. As discussed earlier, only for n = 3, we get a fixed shape
corresponding to a given set of desired bearing vectors, though the scale of the formation is not fixed in this case. Hence,
we study the 3-agent scenario in some detail. Before stating the main problem, we now list some assumptions as follows.

Assumption 1. All agents' local reference frames are aligned, and the dynamics of each agent is given as in
Equation 1.

Note that Assumption 1 is common in the bearing-based formation control problem. To relax this assumption, we could
adopt some orientation alignment strategies simultaneously with the main control law (see for example the works of Zhao
and Zelazo,14 Oh and Ahn,36 and Montijano et al37).

Assumption 2. Each agent i (i ∈ ) is given a desired bearing vector, g∗i ∈ n, with respect to its leader. Moreover,
the set of desired bearing vector n is feasible.

We are now in a position to formally state the problem.

Problem 1. Given a group of n agents in a plane, satisfying Assumptions 1 and 2, and a feasible set of desired bearing
vectors n, design control laws for the agents using only bearing measurements such that gi → g∗i asymptotically,
∀g∗i ∈ n.

2.2 The bearing-only control law
To address the main problem, the bearing-only control law proposed in the work of Zhao and Zelazo14 is adopted.
Specifically, the control law for each agent i, i = 1, … ,n, is given by

ṗi = ui = −Pgi g
∗
i , (9)

where Pgi is the projection matrix associated with the measured bearing vector gi ∈ Rd and is explicitly given by Pgi =
Id−gigT

i . For each agent i, the control law (9) requires only a local bearing measurement gi and a desired bearing vector g∗i .
Intuitively, if agent i+ 1 is stationary, the control law (9) asymptotically drives agent i to a position that satisfies gi = g∗i

while preserving the initial distance between 2 agents (see lemma 1 of the work of Trinh et al20).
Note that the projection matrix Pgi is symmetric, positive semidefinite, and idempotent, ie, Pgi = PT

gi
= P2

gi
. Moreover,

its null space is given by  (Pgi) = Span{gi} and the eigenvalues of Pgi are {0, 1, … , 1}. In R2, the orthogonal projection
matrix can be rewritten as Pgi = g⟂

i (g
⟂
i )

T 35 (see Lemma 6 and Corollary 1 for extension of this result to higher dimensions).
As a result, we can also express the control law (9) as

ṗi = −g⟂
i
(
g⟂

i
)Tg∗i . (10)
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TRINH ET AL. 1079

Remark 1. In this paper, we do not consider collision avoidance between neighboring agents. This assumption is
necessary for all bearing-only–based formation control. In fact, the bearing vectors are undefined when 2 neigh-
bor agents are collocated. Without distance measurements, each agent does not have enough information to avoid
collisions. To tackle the lack of information in the bearing-only setup, several strategies have been proposed. These
include treating collision avoidance separately using vision-based techniques38 or restricting agents' initial positions to
prevent collision.14

3 THE DIRECTED CYCLE FORMATION IN THE PLANE

In this section, we study planar formations under the bearing-only control law (9). We focus on a special case in this
class, ie, formations with 3 agents. The triangular formations in R2 possess a special property as discussed earlier. Their
formation shapes are uniquely determined by specifying the desired bearing vectors. These shapes are only different
up to a scaling factor. We obtain a sufficient condition on initial conditions for the 3-agent system such that the agents
asymptotically achieve the desired bearing. Then, the general n-agent formations are discussed as a natural extension.

3.1 The three-agent formations
The equations of motion for the 3-agent system can be explicitly written as follows:

ṗ1 = −Pg1 g∗1 (11a)

ṗ2 = −Pg2 g∗2 (11b)

ṗ3 = −Pg3 g∗3. (11c)

We define the following sets:

3 ∶=
{

p ∈ R
6|gi = ±g∗i , i = 1, 2, 3

}
,

3 ∶=
{

p ∈ R
6|gi = g∗i , i = 1, 2, 3

}
,

3 ∶= 3∖3.

The set 3 contains all equilibria of Equation 11 and can be partitioned into 3 that contains all desired formations and
3 containing the undesired ones. Figure 4 depicts an example of 2 different triangular formations in 3. Since 3 is
feasible, 3 ≠ ∅, and there exists a triangle specified by 3 desired bearing vectors g∗1, g∗2, and g∗3. Thus, there exist positive
scalars, ie, m1,m2, and m3, such that

m1g∗1 +m2g∗2 +m3g∗3 = 0. (12)

Dividing both sides of Equation 12 by m1 > 0, we obtain

g∗1 = −
m2

m1
g∗2 −

m3

m1
g∗3 = −n2g∗2 − n3g∗3, (13)

where n2 = m2∕m1 > 0 and n3 = m3∕m1 > 0. We examine the set of undesired equilibria 3 next.

Lemma 2. The set 3 contains all points p ∈ R6 such that gi = −g∗i , i = 1, 2, 3.

Proof. Consider a point p ∈ 3 where distances between 3 agents are d1, d2, d3 > 0. Since
∑3

i=1 zi =
∑3

i=1(pi+1−pi) = 0
and zi = digi, we have d1g1 + d2g2 + d3g3 = 0, or equivalently, g1 = −

d2
d1

g2 −
d3

d1
g3. Without loss of generality, assume

FIGURE 4 Formation A, is a desired formation, where gi = g∗i , i = 1, 2, 3, whereas formation B, is an undesired one, where
gi = −g∗i , i = 1, 2, 3
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1080 TRINH ET AL.

FIGURE 5 (Left) The directed triangle formation under the control law (11) and (right) a desired formation

that at p, we have g1 = −g∗1. Then, we have

g∗1 =
d2

d1
g2 +

d3

d1
g3. (14)

Since p ∈ 3 ⊂ 3, it follows g2 = ±g∗2, g3 = ±g∗3. There are 4 possibilities as follows: (i) g2 = −g∗2, g3 = −g∗3; (ii)
g2 = g∗2, g3 = −g∗3; (iii) g2 = g∗2, g3 = −g∗3; and (iv) g2 = g∗2, g3 = g∗3. Upon substituting these values of g2 and g3 for
the 4 cases, in Equation 14, we get a unique representation of g∗1 in terms of g∗2 and g∗3 in each case because g∗2, g∗3,
being linearly independent by definition, form a basis for R2. In other words, the representation of g∗1 in terms of g∗2
and g∗3 over the field of real numbers is unique. Furthermore, from Equation 13, we know that both of these scalars
are negative. Hence, by comparing the representation (14) with Equation 13, it follows that only case (i) is possible
for a feasible triangle. Therefore, we conclude that 3 = {p ∈ R6|gi = −g∗i , i = 1, 2, 3}.

Consider a triangular formation in R2. Let αi be the magnitude of the angle between gi and g∗i , as depicted in Figure 5
(0 ≤ αi ≤ π). Then, at any equilibrium point of Equation 11 in 3, αi = 0,∀i = 1, 2, 3, whereas at any equilibrium point in
3, αi = π,∀i = 1, 2, 3. Thus, the convergence of p to a point in 3 (correspondingly 3) is equivalent to the convergence
of α = [α1, α2, α3]T to [0, 0, 0]T (correspondingly [π, π, π]T). Let βi (0 ≤ βi ≤ π) be the magnitude of the angle between gi+1
and gi. In order to analyze the system's stability, we first change the position dynamics (11) into the angle dynamics. Since

cos αi =
(
g∗i
)Tgi, (15)

taking the derivative with respect to time on both sides of Equation 15 and noting that

𝜕gi

𝜕zi
= 𝜕

𝜕zi

(
zi||zi||

)
=
||zi||I2 − zi

zT
i||zi||||zi||2 =

I2 − gigT
i||zi|| =

Pgi

di
,

we get

α̇i sin αi = −
(
g∗i
)T Pgi

di
(ṗi+1 − ṗi). (16)

Substituting ṗi from Equation 10 and using the idempotent property of the projection matrix, Pgi = P2
gi
= g⟂

i (g
⟂
i )

T in
Equation 16, it follows that

diα̇i sin αi =
(
g∗i
)Tg⟂

i
(
g⟂

i
)Tg⟂

i+1
(
g⟂

i+1
)Tg∗i+1 −

(
g∗i
)Tg⟂

i
(
g⟂

i
)Tg∗i

=(± sin αi)(cos βi)(± sin αi+1) − sin2αi,

where the last step is reached by using (g∗i )
Tg⟂

i = ± sin αi and (g⟂
i )

Tg⟂
i+1 = gT

i JTJgi+1 = gT
i gi+1 = cos βi. Thus, the dynamics

in terms of angles can be explicitly written as

α̇1 = −
sin α1

d1
± sin α2 cos β1

d1
, (17a)

α̇2 = −
sin α2

d2
± sin α3 cos β2

d2
, (17b)

α̇3 = −
sin α3

d3
± sin α1 cos β3

d3
. (17c)
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TRINH ET AL. 1081

Let θ∗i be the absolute angle between the vector g∗i and the x-axis of the global coordinate frame. It follows that the angle
between gi and the x-axis is θ∗i ±αi. As a result, βi = (θ∗i ±αi) − (θ∗i+1±αi+1) is dependent on αi and αi+1 only. Thus, we have
the following relations:

𝜕α̇i

𝜕αi
= −cos αi

di
+

sin αi± sin αi+1 cos βi

d2
i

𝜕di

𝜕αi
± sin αi+1 sin βi

di

𝜕βi

𝜕αi
, (18a)

𝜕α̇i

𝜕αi+1
=

(
±cos αi+1 cos βi

di
+

sin αi± sin αi+1 cos βi

d2
i

𝜕di

𝜕αi+1
± sin αi+1 sin βi

di

𝜕βi

𝜕αi+1

)
, (18b)

𝜕α̇i

𝜕αj
=

sin αi± sin αi+1 cos βi

d2
i

𝜕di

𝜕αj
, j ≠ i, i + 1. (18c)

These aid in the linearization of the system (17) about the equilibria and subsequent local stability analysis. Toward the
same end, we shall now state a refinement of Gershgorin's theorem in accordance with the work of Horn and Johnson.39

Lemma 3. Suppose G(A) is the union of the n Gershgorin disks for a matrix A ∈ Rn×n. If the union of k of the n disks that
comprise G(A) forms a set Gk(A) that is disjoint from the remaining n−k disks, then Gk(A) contains exactly k eigenvalues
of A, counted according to their algebraic multiplicities.

Next, we investigate the local stability of the system described by Equation 17.

Lemma 4. The equilibria corresponding to 3 are locally asymptotically stable, and the ones corresponding to 3
are unstable.

Proof. At each equilibrium in 3, αi = 0, whereas at each equilibrium in 3, αi = π, ∀i = 1, 2, 3. By linearizing
Equation 17, near the equilibrium α = [α1, α2, α3]T = 0,

A1 =
𝜕α̇
𝜕α
|||α=0

=

⎡⎢⎢⎢⎢⎣
− 1

d∗1
± cos β∗1

d∗1
0

0 − 1
d∗2

± cos β∗2
d∗2

± cos β∗3
d∗3

0 − 1
d∗3

⎤⎥⎥⎥⎥⎦
.

Since the desired formation is not a straight line, β∗i ≠ 0, π and the matrix A1 is strictly diagonally dominant. Thus,
by Gershgorin's theorem (see theorem 6.1.10 of the work of Horn and Johnson39), A1 is Hurwitz. It follows that the
equilibria in 3 are locally exponentially stable.

Similarly, near the equilibrium α = [α1, α2, α3]T = [π, π, π]T = π1, we have

A2 =
𝜕α̇
𝜕α
|||α=π1

=

⎡⎢⎢⎢⎢⎣
1

d∗1
± cos β∗1

d∗1
0

0 1
d∗2

± cos β∗2
d∗2

± cos β∗3
d∗3

0 1
d∗3

⎤⎥⎥⎥⎥⎦
.

In this case, A2 is again strictly diagonally dominant, so all its eigenvalues are in the right half of the complex plane.
It follows that all equilibria in 3 are unstable.

Theorem 1. In R2, suppose that 0 ≤ αi(0) ≤ π
2

for i = 1, 2, 3. Under Assumptions 1 and 2 and the control law (9), α→𝟎
asymptotically, ie, the agents asymptotically converge to a formation satisfying all the desired bearing vectors.

Proof. Let V = ||α||∞ = αmax = maxi=1,2,3αi, which is continuous and positive definite. Since V is not continuously dif-
ferentiable, we use Clark's generalized gradient and LaSalle's invariance principle for nonsmooth systems40 to analyze
the system given by Equation 17.

First, without loss of generality, assume that for an interval t ∈ [T1,T2], α1 > α2 ≥ α3 ≥ 0. Then, V = maxi=1,2,3
αi = α1, and in this interval, from Equation 17, we have

V̇ = α̇1 = −
1
d1
(sin α1± sin α2 cos β1)

≤ − 1
d1
(sin α1 − sin α2| cos β1|)

< − 1
d1

sin α2 (1 − | cos β1|) ≤ 0. (19)
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1082 TRINH ET AL.

The last inequality holds, as sin(·) is strictly increasing in its argument in [0, π∕2]. Second, we consider the follow-
ing case:

max
i
αi =

⎧⎪⎨⎪⎩
α1 t ∈ [T1,T2),

α1 = α2 > α3 t = T2,

α2 t ∈ (T2,T3].

Based on the notation of Clark's generalized gradient,40 we have 𝜕V(α) = [1, 0, 0]T for t ∈ [T1,T2), 𝜕V(α) = [0, 1, 0]T
for t ∈ (T2,T3], and, at t = T2,

𝜕V(α) = co
{
[1, 0, 0]T , [0, 1, 0]T

}
=
{
[η1, η2, 0]T|ηi ∈ [0, 1], η1 + η2 = 1

}
,

where co{a, b} denotes the convex closure of a and b. Thus, V̇ exists almost everywhere, and at t = T2, we have
V̇ ∈ ̇̃V , where

̇̃V =
⋂
η∈𝜕V

ηT

[ α̇1
α̇2
α̇3

]
= η1α̇1 + η2α̇2 + 0.α̇3

= −
η1

d1
(sin α1± sin α2 cos β1) −

η2

d2
(sin α2± sin α3 cos β2)

< −
η1

d1
sin α2 (1 − | cos β1|) − η2

d2
sin α3 (1 − | cos β2|)

≤ 0

for all η1 ∈ [0, 1], η2 ∈ [0, 1], and η1 + η2 = 1.
Similarly, consider the case as follows:

max
i
αi =

⎧⎪⎨⎪⎩
α1 t ∈ [T1,T2),

α1 = α3 > α2 t = T2,

α3 t ∈ (T2,T3].

We have 𝜕V(α) = [1, 0, 0]T for t ∈ [T1,T2), 𝜕V(α) = [0, 0, 1]T for t ∈ (T2,T3], and, at t = T2,

𝜕V(α) = co
{
[1, 0, 0]T , [0, 0, 1]T

}
=
{
[η1, 0, η3]T|ηi ∈ [0, 1], η1 + η3 = 1

}
.

Thus, V̇ exists almost everywhere, and at t = T2, V̇ ∈ ̇̃V , where

̇̃V =
⋂
η∈𝜕V

𝛈T

[ α̇1
α̇2
α̇3

]
= η1α̇1 + 0.α̇2 + η3α̇3

= −
η1

d1
(sin α1± sin α2 cos β1) −

η3

d3
(sin α3± sin α1 cos β3)

= −
η1

d1
(sin α1± sin α2 cos β1) −

η3

d3
(sin α1± sin α1 cos β3)

< −
η1

d1
sin α2 (1 − | cos β1|) − η3

d3
sin α1 (1 − | cos β3|)

≤ 0.

Third, suppose that, at t = T4, α1 = α2 = α3. Then, Clark's generalized gradient of V at t = T4 is given by

𝜕V(α) = co
{
[1, 0, 0]T , [0, 1, 0]T , [0, 0, 1]T

}
=
{
[η1, η2, η3]T|ηi ∈ [0, 1], η1 + η2 + η3 = 1

}
.
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TRINH ET AL. 1083

FIGURE 6 Illustration of the situation when 3 agents are collinear and α1 = α2 = α3 > 0 [Colour figure can be viewed at
wileyonlinelibrary.com]

Then, V̇ ∈ ̇̃V , and since α̇i is continuous at t = T4,

̇̃V =
⋂
𝛈∈𝜕V

𝛈T

[ α̇1
α̇2
α̇3

]
= η1α̇1 + η2α̇2 + η3α̇3

= −
η1

d1
(sin α1± sin α2 cos β1) −

η2

d2
(sin α2± sin α3 cos β2)

−
η3

d3
(sin α3± sin α1 cos β3)

≤ − sin α1

3∑
i=1

ηi

di
(1 − | cos βi|) ≤ 0 (20)

for all ηi ∈ [0, 1], η1 + η2 + η3 = 1.
From the above cases, we can conclude that V is a nonincreasing function of time and 0 ≤ αi ≤ αmax ≤ αmax(0) ≤ π∕2,

∀t ≥ 0. Furthermore, V̇ = 0 can occur if and only if α1 = α2 = α3 and one of the following conditions holds.

• α1 = α2 = α3 = 0.
• There exists i such that βi = kπ, k ∈ {0, 1} and αi ≠ 0. Without loss of generality, let i = 1. Then, agents 1, 2, and 3

are collinear in that order along a lineΔ, as illustrated in Figure 6. In this case, we have β1 = 0 and β2 = β3 = π. The
lineΔ separates the plane into 2 regions, ie, regions I and II. Suppose g∗3 points toward region II. Since α1 = α3 and
g∗1 ≠ ±g∗3, it follows that g∗1 must also point toward region II. Now, consider agent 2, if g∗2 points toward region I,
since α2 = α3, it follows g∗2 = −g∗3, which is a contradiction. On the other hand, if g∗2 points toward region II, since
α3 = α1, it follows that g∗2 = g∗1, which is also a contradiction. Thus, it is ruled out.

Consequently, ̇̃V < 0 whenever there exists i such that αi > 0 and ̇̃V = 0 if and only if αi = 0,∀i = 1, 2, 3. It follows
that αi → 0 asymptotically.40

3.2 The n-agent formations
Similar to the 3-agent case, define the following sets:

n ∶=
{

p ∈ R
2n|gi = ±g∗i , i = 1, … ,n

}
,

n ∶=
{

p ∈ R
2n|gi = g∗i , i = 1, … ,n

}
,

n ∶= n∖n.

n is the set of all equilibria of Equation 9 that can be partitioned into n (the set of desired equilibria) and n (the set
of undesired equilibria). Unlike the 3-agent case, the undesired equilibrium set n may admit different possibilities and
not just the set {p ∈ R2n|gi = −g∗i , i = 1, … ,n}. Thus, Lemma 2 cannot be generalized for n-agents. Figure 7 shows an
example of a 4-agent formation to illustrate this.

FIGURE 7 A desired formation is given in A. An undesired formation is given in B, where g1 = −g∗1, g2 = g∗2, g3 = −g∗3, and g4 = g∗4
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1084 TRINH ET AL.

FIGURE 8 Formation of n agents under control law (9)

Consider a directed cycle formation in R2. As in the case of a triangle, let αi be the magnitude of the angle between gi
and g∗i , as shown in Figure 8 and note that 0 ≤ αi ≤ π. Each equilibrium p∗ ∈  corresponds to αi = 0, i = 1, … ,n. For
each equilibrium p∗ ∈  , there exists at least an index i, 1 ≤ i ≤ n such that αi = π.

As in the 3-agent case, let βi be the magnitude of the angle between gi and gi+1 and di = ||zi|| be the distance between
agents i and i + 1. The dynamics in terms of angles are given by

α̇i = −
sin αi

di
± sin αi+1 cos βi

di
, i = 1, … ,n. (21)

Lemma 5. The equilibria corresponding to n are locally asymptotically stable, whereas those corresponding to n
are unstable.

Proof. The proof is similar to that of Lemma 4. By linearizing Equation 21 near the corresponding equilibrium, we
find that, at a desired equilibrium

𝜕α̇
𝜕α
||||α=0

=

⎡⎢⎢⎢⎢⎢⎢⎣

− 1
d∗1

± cos β∗1
d∗1

0 · · · 0
⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋮ ⋱ − 1
d∗m−1

± cos β∗m−1
d∗m−1

± cos β∗m
dm

0 · · · 0 − 1
d∗m

⎤⎥⎥⎥⎥⎥⎥⎦
is Hurwitz according to Gershgorin's theorem, unless cos β∗i = 1,∀i. However, this possibility is ruled out near an
equilibrium since we know that, for a feasible formation, β∗i ≠ 0 for any i. On the other hand, for any equilibrium
α = α∗ in n, there exists at least some i, 1 ≤ i ≤ n, such that α∗i = π. Thus, we have

𝜕α̇
𝜕α
||||α=α∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 1
d∗1

± cos β∗1
d∗1

0 · · · 0
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ 1

d∗i
± cos β∗i

d∗i
0

0 ⋮ ⋱ ⋱ ⋱

± cos β∗m
d∗m

0 · · · 0 − 1
d∗m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and observe that there always exists at least one Gershgorin disk in the open right half-plane (corresponding to the
ith row). If there are more such rows with positive diagonal entries, then the disks corresponding to all such rows will
be contained in the right half-plane. Moreover, all such disks in the right half-plane disk are disjoint from the disks
in the left half-plane. Using the refinement stated in Lemma 3, it follows that there must be at least one eigenvalue
with a positive real part if there is at least one positive diagonal entry in the Jacobian above. Thus, α∗ is an unstable
equilibrium. Hence, any undesired equilibrium in n is unstable.

Theorem 2. In R2, suppose that 0 ≤ αi(0) ≤ π
2

for i = 1, … ,n. Under Assumptions 1 and 2 and the control law (9),
α→ 0 asymptotically, ie, the agents asymptotically converge to a formation satisfying all the desired bearing vectors.

Proof. Consider the Lyapunov function V = ||α||max = max
i=1,… ,n

αi. By similar arguments as in Theorem 1, V is a

decreasing function of time and 0 ≤ αi ≤ αmax ≤ αmax(0) ≤ π∕2, ∀t ≥ 0. Furthermore, V̇ = 0 if and only if
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TRINH ET AL. 1085

FIGURE 9 Four possible directions that the desired bearing vector makes an angle α with the line Δ

FIGURE 10 Vector g∗i points northeast

αi = αj∀i, j = 1, … ,n and one of the following conditions holds: (i) αi = αj = 0,∀i, j = 1, … ,n or (ii) there exists a
straight line in 2D such that all desired bearing vectors g∗i are equally inclined with it by an angle α. In the following,
we will prove that (ii) cannot happen and, thus, (i) is the only possible equilibrium.

Suppose that the agents have all aligned themselves in a straight line formation. Clearly, for a given α, there are only
4 possible directions, as illustrated in Figure 9. Without loss of generality, if one of the directions marked ‘e’ corre-
sponds to an agent i such that i is even, then agent (i+1)must have g∗i+1 along one of the directions marked ‘o’ because
of the requirement that g∗i ≠ ±g∗i+1. Now, by mathematical induction, it follows that all agents with odd indices must
be along one of the directions marked ‘o’ and all even indexed agents bearings must be along the directions marked ‘e’.
We split up the situation into 2 cases as follows.

Case 1. n is odd.
Consider the agent indexed n. Since n is odd, it must have its desired bearing g∗n along one of the directions
marked ‘o’. However, agent n + 1 (modulo n) or agent 1 also points along one of the directions marked ‘o’.
Thus, for odd n, we cannot have this scenario without violating Assumption 2.

Case 2. n is even.
Suppose n is even. Clearly, this does not pose the same problem as for the odd number of agents. Therefore,
it is possible that agents do line up along a straight line Δ. However, we need to investigate if such a straight
line formation is sustained. Consider the following equation:

di sin αiα̇i =
(
g∗i
)T (g⟂

i
) (

g⟂
i
)Tg⟂

i+1
(
g⟂

i+1
)Tg∗i+1 −

[(
g∗i
)Tg⟂

i

]2

when the agents are aligned along a straight line. Without loss of generality, we further suppose that the desired
bearing of agent i is pointing toward northeast (NE), as shown in Figure 10. In Figure 10A, (g∗i )

Tg⟂
i = + sin α,

and in Figure 10B, (g∗i )
Tg⟂

i = − sin α.

Now, consider the agent (i + 1). Figure 11 depicts 4 possible configurations of the bearings of agent (i + 1). Clearly,
in Figure 11A,D, (g∗i+1)

Tg⟂
i+1 = + sin α, whereas in Figure 11B,C, (g∗i+1)

Tg⟂
i+1 = − sin α.

Now, for Figures 10A, 11A, and 11B taken together, cos βi = (g⟂
i )

Tg⟂
i+1 = gT

i gi+1 = cos 0 = 1, and for Figures 10A,
11C, and 11D taken together, cos βi = cos π = −1. Similarly, for Figures 10B, 11A, and 11B, cos βi = −1, and for
Figures 10B, 11C, and 11D taken together, cos βi = 1.

Keeping these in mind, it turns out that, for g∗i , as in Figure 10A,

α̇i =

{
0 for g∗i+1 as in Figures 11A and 11C
− 2 sin α

di
for g∗i+1 as in Figures 11B and 11D.

Similarly, for g∗i , as in Figure 10B,

α̇i =

{
0 for g∗i+1 as in Figures 11A and 11C
− 2 sin α

di
for g∗i+1 as in Figures 11B and 11D.
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1086 TRINH ET AL.

FIGURE 11 Four possible configurations of the bearings of agent (i+1)

Thus, if g∗i points NE, g∗i+1 must point northwest (NW) for α̇i = 0.
By a similar procedure, it may be shown that, if g∗i+1 points NW, then g∗i+2 must point NE for α̇i+1 = 0.
Combining these facts, it turns out that, if α̇i = 0,∀i ∈  at the straight line formation is to hold true, then the

sequence of desired bearings must be … - NE - NW - NE - NW - … . As a result, all desired bearing vectors are
contained in a half-plane on the north side of the lineΔ. This clearly violates Lemma 1 for the feasible desired bearing
set. Hence, we conclude that, at the straight line configuration, there must be some i such that α̇i ≠ 0. Similar reasoning
may be applied for g∗i along any direction other than NE.

Hence, we conclude that, if the agents happen to align along a straight line for t = t1, they cannot remain in this
configuration ∀t > t1.

4 THE TRIANGULAR FORMATION IN THE THREE-DIMENSIONAL SPACE

In this section, we extend the analysis on directed triangular formations to the 3-dimensional space. The directed trian-
gular formations in the 3-dimensional space exhibit both similarities and uniqueness properties just as in the planar case.
This extension also illustrates the challenges in analyzing system dynamics in a higher dimensional space and when the
number of agents, n, is greater than 3.

4.1 Preliminary results
Consider a group of 3 autonomous agents in R3. Each agent follows the bearing-only control law (9), where Pgi ∈ R3×3

is the projection matrix and g∗i ∈ R3 is the desired bearing vector of agent i. The following property holds for projection
matrices.

Lemma 6. Let gi, gi,1, gi,2 ∈ R3 be a set of 3 orthonormal vectors. The following holds:

Pgi = I3 − gigT
i = gi,1gT

i,1 + gi,2gT
i,2. (22)

Proof. Consider an arbitrary vector u ∈ R3. From the definition of the 3 unit vectors gi, gi,1, and gi,2, these vectors
form a basis in R3. Thus, we can write u = m1gi +m2gi,1 +m3gi,2, where ml ∈ R∀l. Observe that(

gigT
i + gi,1gT

i,1 + gi,2gT
i,2

)
u =

(
gigT

i + gi,1gT
i,1 + gi,2gT

i,2

)
(m1gi +m2gi,1 +m3gi,2)

= m1gigT
i gi +m2gi,1gT

i,1gi,1 +m3gi,2gT
i,2gi,2

= m1gi +m2gi,1 +m3gi,2 = u. (23)

Since Equation 23 holds for any arbitrary u ∈ R3, we have

gigT
i + gi,1gT

i,1 + gi,2gT
i,2 = I3, (24)

and Equation 22 follows immediately.
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TRINH ET AL. 1087

In a similar manner, the result of Lemma 6 can be generalized to an arbitrary d-dimensional space (d ≥ 2).

Corollary 1. Let gi and gi,1, … , gi,d−1 be an orthonormal basis in Rd(d ≥ 2). The following expression holds:

Pgi = Id − gigT
i =

d−1∑
k=1

gi,kgT
i,k. (25)

Since the set of desired bearing vectors 3 = {g∗i ∈ R3|||g∗i || = 1, i = 1, 2, 3} is feasible, there exist positive constants
d1, d2, and d3 such that

d1g∗1 + d2g∗2 + d3g∗3 = 0. (26)

Note that Equation 26 implies that the 3 desired bearing vectors g∗1, g
∗
2, and g∗3 are coplanar.

Next, we study the set of equilibria of Equation 9 for the 3-agent case. Define the following sets:

̄3 ∶=
{

p ∈ R
9|gi = ±g∗i , i = 1, 2, 3

}
,

̄3 ∶=
{

p ∈ R
9|gi = g∗i , i = 1, 2, 3

}
,

̄3 ∶= 3∖3,

where the set ̄3 contains all equilibria of Equation 9, which includes ̄3 (the set of all desired formations) and ̄3 (the
set of undesired formations). As before, ̄3 ≠ ∅, and there exists a triangle specified by the 3 desired bearing vectors g∗1,
g∗2, and g∗3 since they comprise a feasible desired bearing set. We have the following lemma about the set of undesired
equilibrium. The proof is similar to that of Lemma 2 by treating the plane on which the desired formation lies as R2.

Lemma 7. The set ̄3 contains all points p ∈ R9 such that gi = −g∗i , i = 1, 2, 3.

Remark 2. Note that the directed cycle graph with 4 agents, 4, in R3 can also be bearing rigid (see the work of
Zhao et al41 for a discussion) and is the counterpart of the triangle in R2. However, in the following subsection, we
provide a result on local stability of general directed cycle formations in R3 and study asymptotic stability of the
triangular formations in detail. The stability analysis of the 3-agent formation illustrates the challenges involved in
analyzing the stability of more general formations in 3-dimensions.

4.2 The dynamical model
Let αi be the magnitude of the angle between gi and g∗i for i = 1, 2, 3. Since the 3 desired bearing vectors define a plane in
R3, the shape of the triangle and the plane on which it lies are fixed whenever all 3 desired bearing vectors are satisfied.
Thus, according to Lemma 7, the equilibria can be equivalently classified into 2 sets based on the angles αi: ̄3 = {p ∈
R9|αi = 0, i = 1, 2, 3} and ̄3 = {p ∈ R9|αi = π, i = 1, 2, 3}. Given a formation p(0) ∈ R9, instead of the position
dynamics (9), we can study the angle dynamics in terms of αi. Toward this end, we transform Equation 9 into the angle
dynamics. Figure 12 depicts the sensing model of agent i. It may be noted that, although the desired triangle is a planar
polygon, the trajectories of the agents do not necessarily evolve along the plane on which the desired formation lies. In
Figure 12, we denote the following.

• αi: the magnitude of the angle between gi and g∗i , 0 ≤ αi ≤ π.
• i: the plane having 2 tangent vectors gi,1 and gi,2, or in other words, the plane having gi as its normal vector.
• ∇i = i ∩ i+1: the intersection between planes i and i+1.
• γi: the angle between the orthogonal projection of g∗i into the plane i and gi,1, 0 ≤ γi < 2π.
• βi: the magnitude of the angle between gi and gi+1, 0 ≤ βi ≤ π.

For each αi, i = 1, … ,n, we can write

cos αi =
(
g∗i
)Tgi. (27)
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1088 TRINH ET AL.

FIGURE 12 The sensing model of an agent i in the 3D space

Taking the derivative of both sides of Equation 27, it follows

sin αiα̇i = −g∗T
i

Pgi

di
(ṗi+1 − ṗi)

= −g∗T
i

Pgi

di

(
−Pgi+1 g∗i+1 + Pgi g

∗
i
)

= g∗T
i

Pgi Pgi+1

di
g∗i+1 − g∗T

i
Pgi

di
g∗i .

Note that

g∗T
i Pgi g

∗
i = g∗T

i

(
gi,1gT

i,1 + gi,2gT
i,2

)
g∗i =

(
gT

i,1g∗i
)2
+
(

gT
i,2g∗i

)2

= sin2αicos2γi + sin2αisin2γi = sin2αi(cos2γi + sin2γi) = sin2αi,

and

g∗T
i Pgi Pgi+1 g∗i+1 = g∗T

i

(
gi,1gT

i,1 + gi,2gT
i,2

)(
gi+1,1gT

i+1,1 + gi+1,2gT
i+1,2

)
g∗i+1

=
(

g∗T
i gi,1gT

i,1 + g∗T
i gi,2gT

i,2

)(
gi+1,1gT

i+1,1g∗i+1 + gi+1,2gT
i+1,2g∗i+1

)
= ±

(
sin αi cos γigT

i,1 + sin αi sin γigT
i,2

) (
gi+1,1 sin αi+1 cos γi+1 + gi+1,2 sin αi+1 sin γi+1

)
= ± sin αi sin αi+1

(
cos γigT

i,1 + sin γigT
i,2

)
(gi+1,1 cos γi+1 + gi+1,2 sin γi+1)

= ± sin αi sin αi+1hi, (28)

where

hi = wT
i,1wi,2 = (cos γigi,1 + sin γigi,2)T(cos γi+1gi+1,1 + sin γi+1gi+1,2). (29)

To ease the calculation of hi, we choose gi+1,1 perpendicular to the line∇i and gi+1,2 lies along∇i as depicted in Figure 13.
Let ψi be the angle between gi,1 and the orthogonal projection of gi+1,1 on the plane i; then, 0 ≤ ψi < 2π. We thus have
gT

i,1gi+1,1 = | cos βi| cosψi, gT
i,1gi+1,2 = sinψi, gT

i,2gi+1,1 = | cos βi| cos(ψi + π
2
) = −| cos βi| sinψi, and gT

i,2gi+1,2 = cosψi.
Substituting these into Equation 29, it follows

hi = | cos βi| cos γi cos γi+1 cosψi + cos γi sin γi+1 sinψi − | cos βi| sin γi cos γi+1 sinψi+1 + sin γi sin γi+1 cosψi

= | cos βi| cos γi+1(cos γi cosψi − sin γi sinψi) + sin γi+1(cos γi sinψi + sin γi cosψi)
= | cos βi| cos γi+1 cos(γi + ψi) + sin γi+1 sin(γi + ψi). (30)

In Equation 30, applying the Cauchy-Schwarz inequality (AX + BY)2 ≤ (A2 + B2)(X2 + Y2), it follows

h2
i ≤ (cos2βicos2γi+1 + sin2γi+1)

(
cos2(γi + ψi) + sin2(γi + ψi)

)
≤ (1.cos2γi+1 + sin2γi+1).1 = 1, (31)

with equality holding when A∕X = B∕Y. However, since
√

X2 + Y 2 = 1, for |hi| = 1, we also require
√

A2 + B2 = 1.
Hence, from Equations 30 and 31, for |hi| = 1, it is necessary that either (i) | cos βi| = 1 and γi+1 = ψi+γi or (ii) | cos βi| ≠ 1
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TRINH ET AL. 1089

FIGURE 13 Illustration of vectors gi,1, gi,2, gi+1,1, and gi+1,2 [Colour figure can be viewed at wileyonlinelibrary.com]

and sin γi+1 = sin(γi + ψi) = 1. Condition (i) implies βi = 0, π, ie, gi = ±gi+1. Condition (ii) implies γi+1 = either π
2

or 3π
2

for each i, and it follows further from Equation 30 that sin(γi + ψi) = 1, ie, ψi = 0, or π.
Overall, we can write the dynamical equation of αi for the 3-agent scenario as follows:

α̇i = −
sin αi

di
±hi

sin αi+1

di
, (32)

where |hi| ≤ 1 for i = 1, 2, 3. It may be pointed out that, though Equation 32 involves more angle variables to describe the
dynamics in 3 dimensions, it has a form similar to the 2-dimensional version (17) in Section 3.

4.3 Stability analysis
We shall now study the system (32). As before, we note that

𝜕α̇i

𝜕αi
= −cos αi

di
+ sin αi± sin αi+1hi

d2
i

𝜕di

𝜕αi
+ sin αi+1

di

𝜕hi

𝜕αi
, (33a)

𝜕α̇i

𝜕αi+1
= ±cos αi+1hi

di
+ sin αi± sin αi+1hi

d2
i

𝜕di

𝜕αi+1
+ sin αi+1

di

𝜕hi

𝜕αi+1
, (33b)

𝜕α̇i

𝜕αj
= sin αi± sin αi+1hi

d2
i

𝜕di

𝜕αj
± sin αi+1

di

𝜕hi

𝜕αj
, j ≠ i, i + 1. (33c)

We are now equipped to prove the following result on local stability.

Lemma 8. The equilibria corresponding to ̄3 are locally asymptotically stable and the ones corresponding to ̄3 are
unstable.

Proof. At each equilibrium in ̄3, αi = 0, whereas at each equilibrium in ̄3, αi = π, ∀i = 1, 2, 3. Denote α =
[α1, α2, α3]T. Linearizing Equation 32, for 3 agents, at the equilibrium α = 0

A1 =
𝜕α̇
𝜕α
||||α=0

=

⎡⎢⎢⎢⎢⎣
− 1

d∗1
± h∗1

d∗1
0

0 − 1
d∗2

± h∗2
d∗2

± h∗3
d∗3

0 − 1
d∗3

⎤⎥⎥⎥⎥⎦
.

In order to use Gershgorin's theorem, we have to ensure that |h∗i | < 1 at the equilibrium point. However, the
diagonally dominant Jacobian, A1, satisfies the ‘SC-property’ as mentioned in the work of Horn and Johnson.39 Thus,
according to theorem 6.2.8 and corollary 6.2.9 in the work of Horn and Johnson,39 if the Jacobian A1 has to have an
eigenvalue at the origin, then |hi| = 1∀i is required. Therefore, it suffices to ensure that |hi| = 1 cannot hold for at least
some i. However, we can, in fact, show that |hi| < 1∀i. From the assumption that g∗i ≠ g∗i+1,∀i, it follows that | cos β∗i | ≠
1 or condition (i) cannot occur for all i, ie, β∗i = 0, π cannot hold for any i. Moreover, condition (ii) also cannot hold
because, at the equilibrium, γi = 0∀i. This is true since the projection of gi = g∗i on the plane i is zero for all i. Thus,
from Equation 29 and the discussion following it, at equilibrium, α = 0, and we have |h∗i | = | cos β∗i cosψ∗i | < 1∀i.
In fact, for a triangle (a planar polygon), at equilibrium, we have ψ∗i = 0∀i, so the off-diagonal entries of A1 are the
same as that obtained for the 2-dimensional case. Thus, the matrix A1 is strictly diagonally dominant with negative
diagonal entries and is therefore Hurwitz by Gershgorin's theorem.39 It follows that the equilibrium α = 0 is locally
exponentially stable.
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1090 TRINH ET AL.

Similarly, at the equilibrium α = [α1, α2, α3]T = [π, π, π]T = π1, we have

A2 =
𝜕α̇
𝜕α
||||α=π1

=

⎡⎢⎢⎢⎢⎣
1

d∗1
± h∗1

d∗1
0

0 1
d∗2

± h∗2
d∗2

± h∗3
d∗3

0 1
d∗3

⎤⎥⎥⎥⎥⎦
.

In this case, A2 is again strictly diagonally dominant, so all its eigenvalues are in the right half of the complex plane.
It follows that all equilibria in 3 are unstable.

We shall now state another lemma that will aid in analyzing the region of attraction of the desired equilibria.

Lemma 9. Suppose 3 coplanar unit vectors vi ∈ R3, i = 1, 2, 3, which are pairwise linearly independent, satisfy∑3
i=1 λivi = 0 for λi ∈ R+. A fourth unit vector v ∈ R3 that subtends equal angles with each vi must be normal to the

plane containing the 3 vectors.

Proof. Consider vT ∑3
i=1 λivi = 0. Now, |vTvi| = c ∈ R+ ∀i. Thus, we have c(±λ1±λ2±λ3) = 0. Since vi is pairwise

linearly independent and satisfy
∑3

i=1 λivi = 0, these vectors define triangles in their common plane, each of whose
sides has lengths equal or proportional to λi with the constant of proportionality describing the size of the particular
triangle. Furthermore, we know that, for a triangle, the sum of the length of 2 sides is always greater than the third.
Therefore, (±λ1±λ2±λ3) ≠ 0. Thus, c = 0. Hence the result is proved.

Theorem 3. In R3, suppose that 0 ≤ αi(0) ≤ π
2

for i = 1, 2, 3. Under the control law (9), α → 0 asymptotically, ie, the
agents asymptotically converge to a formation satisfying all the desired bearing vectors.

Proof. Consider the Lyapunov function V = ||α||∞ = maxi=1,2,3αi, by similar arguments as in Theorem 1, V is a
decreasing function of time and 0 ≤ αi ≤ αmax ≤ αmax(0) ≤ π∕2, ∀t ≥ 0. Furthermore, V̇ = 0 if and only if α1 = α2 = α3
and one of the following conditions holds.

1. α1 = α2 = α3 = 0.
2. There exists a configuration such that |hi| = 1,∀i. Then, the following possibilities emerge.

(a) βi = 0 or π, and γi+1 = γi + ψi for all i.
(b) γi = either π

2
or 3π

2
, and ψi = 0, π for each i.

(c) βi = 0 or π and γi+1 = γi +ψi for some i, whereas γj = π
2

or 3π
2

and ψj = 0 or π for the remaining j ∈  , j ≠ i.

We will prove that each of the cases (a), (b), and (c) cannot hold.

1. In this case, 3 agents are collinear because of βi = 0 or π for i = 1, 2, 3. Furthermore, the 3 desired bearing vectors
are coplanar (because they are feasible) and α1 = α2 = α3 = α ≠ 0. Now, following Lemma 9, we may conclude
that α = π∕2 and the agents are aligned along the normal to the plane containing the desired bearing vectors.
Thus, the planes i are identical for all i. This is also the same plane on which all the desired bearing vectors lie.
Now, consider the expression for hi in Equation 29. From the definition of γi, it is clear that, in this case, the vectors
wi,1 and wi,2 are the unit vectors g∗i and g∗i+1, respectively, because the orthogonal projections of g∗i and g∗i+1 on i
(or i+1) are the vectors g∗i and g∗i+1 themselves. Since g∗i ≠ ±g∗i+1 for a feasible formation, we conclude that |hi|,
which is the inner product of 2 linearly independent unit vectors, must be less than unity for all i. Alternately,
we could arrive at the same conclusion about |hi| by observing that the requirement γi+1 = γi + ψi also leads to
g∗i = ±g∗i+1 because, now, gi,1 and gi+1,1, being coplanar, are separated by the angle ψi. This is clearly infeasible,
leading to a contradiction.

2. In this case, it is clear from Figure 13 that ψi = 0, π ∀i leads to gi,2 = ±gi+1,2 ∀i. Since we have chosen gi+1,2 to lie
along ∇i, ie, the line of intersection of i and i+1, it immediately follows that all the planes i intersect along
the same line, eg, ∇, as shown in Figure 14A. In addition, since γi = either π

2
or 3π

2
for each i, we conclude from

the definition of γi that the 3 vectors g∗i , gi and gi,2 are all orthogonal to gi,1 and hence coplanar for all i. It may
be remarked that even if γi = π

2
while γi+1 = 3π

2
, the coplanarity of g∗i , gi, and gi,2 still holds. In other words, all γi

need not necessarily be equal as long as they are either π
2

or 3π
2

individually; our conclusion about the coplanarity
is unaffected.
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TRINH ET AL. 1091

(A) All planes intersect on the line . (B) and are perpendicular to .

FIGURE 14 Illustration of the proof of Theorem 3 [Colour figure can be viewed at wileyonlinelibrary.com]

Denote the plane containing the triplets g∗i , gi, and gi,2 as ⟂
i . Note that all such planes ⟂

i also intersect along
the common line ∇, containing gi,2. Since αi = α ≠ 0∀i, we may now deduce that, for each i, g∗i has 2 possible
orientations on the plane⟂

i for a given gi. This is illustrated in Figure 14B. For one of these orientations, gT
1,2g∗i > 0

whereas for the other, gT
1,2g∗i < 0. Since there exist scalars di > 0 such that

∑3
i=1 dig∗i = 0, it follows gT

1,2g∗i cannot
all be positive or negative because, otherwise, gT

i,2(
∑3

i=1 dig∗i ) ≠ 0 for any choice of the scalars di. Thus, the desired
g∗i bearings can neither all be pointing toward g∗+i nor all be pointing toward g∗−i in Figure 14B. In other words,
we may conclude that, in Equation 28, the orthogonal projection of g∗i on i, ie, Pgi g

∗
i and that of g∗i+1 on i+1, ie,

Pgi+1 g∗i+1, both of which lie on the line∇ that is common to all the planes i, cannot point along the same direction
for all i. Hence, the inner product of these 2 projections, g∗T

i Pgi Pgi+1 g∗i+1, must be negative for some i. Thus, for
some i, the product ± sin αi sin αi+1 must be − sin αi sin αi+1 = −sin2α. This is because there must be some i such
that g∗i points along g∗+i while g∗i+1 is along g∗−i+1 or vice versa. At the same time, for 3 agents, there will also be
some j such that the product ± sin αj sin αj+1 must be + sin αj sin αj+1 = +sin2α. Hence, there exists i such that its
dynamics will be

α̇i =
2 sin α

di
≠ 0.

In addition, j such that its dynamics will be

α̇j = 0.

This nonzero derivative of αi will cause it to change the value of αi whereas the zero derivative of αj will cause αj
to remain unchanged. This will violate the condition αi = α∀i, and thus, V̇ will not remain zero.

3. In this case, since there are only 3 agents, βi = 0 again implies that 3 agents are collinear. Thus, it reduces to the
same scenario as in (a).

From above arguments, (ii) cannot happen, and thus, V̇ = 0 if and only if (i) happens or 3 agents are at the desired
formation. It follows from the LaSalle invariance principle that the desired equilibrium is asymptotically stable.

4.4 The n-agent case
We now briefly consider the case of an n-agent system in R3. As before, we define the following sets:

̄n =
{

p ∈ R
3n|gi = ±g∗i

}
,

̄n =
{

p ∈ R
3n|gi = g∗i

}
,

̄n = ̄n∖̄n.

The following lemma is about the local stability of equilibrium sets ̄n and ̄n.

Lemma 10. The equilibria corresponding to ̄n are locally asymptotically stable, and the ones corresponding to ̄n
are unstable.

 10991239, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.3921 by T

echnion-Israel Institution O
f T

echnology, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


1092 TRINH ET AL.

Proof. Linearizing Equation 32, for n agents, at the equilibrium α = 0,

A1 =
𝜕α̇
𝜕α
||||α=0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
d∗1

± h∗1
d∗1

0 · · · 0

0 − 1
d∗2

± h∗2
d∗2

· · · 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 · · · ± h∗n−1
d∗n−1

± h∗n
d∗n

0 0 · · · − 1
d∗n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Following a same argument as in Lemma 8, we can prove that the Jacobian A1 is strictly diagonally dominant at the
equilibria corresponding to ̄n and is thus Hurwitz. Similarly, the Jacobian at the equilibria corresponding to ̄n has
all its eigenvalues in the right half-plane, and thus, they correspond to unstable equilibria.

Remark 3. It may be noted that it is not straightforward to prove the asymptotic stability of the equilibrium in ̄n.
Consider the Lyapunov function V = maxi=1,… ,nαi, we can process in a similar manner as in Theorem 3 until the
step of examining all possibilities that may lead to V̇ = 0. At that point, we cannot deduce collinearity of the n-agent
formation as in case (c) in the proof of Theorem 3.

5 SIMULATIONS

5.1 Simulation 1: A three-agent formation in R
2

In this simulation, we consider 3 agents. The desired formation is an equilateral triangle. The initial positions of the agents
are p1(0) = [0, 0]T, p2(0) = [1.5,−1]T, and p3(0) = [2, 1.5]T, as shown in Figure 15A. It may be verified that the condition
for convergence is satisfied.

The trajectories of the 3 agents are shown in Figure 15B. The agents asymptotically form an equilateral triangle as
desired. Observe from Figure 15C that the angle αi converges to 0 asymptotically as t → ∞.

For the same system with another initial condition that does not satisfy our condition αi ≤
π
2
∀i, it is shown in Figure 16

that instability can occur. Thus, the simulation results are consistent with our analysis in Section 3.1.

5.2 Simulation 2: A six-agent formation in R
2

Next, we consider a 6-agent system with the measurement graph, as depicted in Figure 1. The desired bearing vectors are
chosen to obtain a regular hexagon. The initial positions of the agents are chosen such that they are not too far from the
desired bearings.
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FIGURE 15 Simulation results of a 3-agent formation under the bearing-only control law (9) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 16 The 3-agent formation under the bearing-only control law (9) with another initial condition [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 17 Simulation results of a 6-agent formation under the bearing-only control law (9) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 18 Simulation results of the 6-agent formation for a different set of initial conditions [Colour figure can be viewed at
wileyonlinelibrary.com]

Two simulations with different initial conditions, both satisfying αi ≤
π
2
∀i, are shown in Figures 17 and 18. In both

simulations, the agents asymptotically converge to a formation that satisfies the desired bearing vector set n. The maxi-
mum angle αmax asymptotically decays, as can be seen from Figures 17C and 18C. Observe from Figures 17B and 18B that
the final formation shape is not fixed. This further shows that for n > 3, the shape of the n-formation is not uniquely
determined by specifying bearings alone.

 10991239, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.3921 by T

echnion-Israel Institution O
f T

echnology, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1094 TRINH ET AL.

0

1

2

0.5
1

1.5

−1

0

1

2

x

3

2

Initial positions of three agents

1

y

z

initial positions

0.5
1

1.5
2

0.5
1

1.5

−0.5

0

0.5

1

1.5

x

3

2

Trajectories of three agents

1

y

z

initial positions
final positions
trajectory

0 2 4 6 8 10
0

0.5

1

1.5

time [s]

[r
ad

]

Angle errors vs Time

 

1
2
3

(A) The initial formation. (B) Trajectories and final formation. (C) The angles vs. time [s].

FIGURE 19 Three agents form an equilateral triangle formation under the bearing-only cyclic pursuit control law (9) [Colour figure can
be viewed at wileyonlinelibrary.com]

5.3 Simulation 3: A three-agent formation in R
3

We simulate a 3-agent formation in R3. The desired formation is an equilateral triangle whose desired bearing vectors are
given by g∗1 = [−

√
2∕2, 0,

√
2∕2]T , g∗2 = [0,

√
2∕2,−

√
2∕2]T , and g∗3 = [

√
2∕2,−

√
2∕2, 0]T .

Simulation results are shown in Figure 19. The initial positions of the 3 agents are not parallel to the plane specified
by the desired bearing vectors. The initial angle errors satisfy the condition 0 ≤ αi ≤

π
2
, ∀i. From the agents' trajectories

depicted in Figure 19B, we observe that 3 agents asymptotically reach the desired plane and achieve the desired formation
shape. Thus, we conclude that the simulation result is consistent with our analysis in Section 4.

6 CONCLUSIONS

In this paper, a bearing-only formation control problem with directed cycle sensing topology has been studied in R2. We
first derived necessary and sufficient conditions for the feasibility of planar formations defined by a set of desired bearing
vectors. Then, we provided some results pertaining to the local asymptotic stability of the desired formation and instability
of the undesired one for 3- and n-agent formations. Furthermore, an extended analysis of the 3-agent case in R3 was also
presented. The stability analysis of the 3-agent formations inR3 illustrates the challenges involved in extending the results
to higher dimensional spaces.

For future works, we aim to implement the formation control strategy proposed in this paper in quadcopter systems.
To this end, collision avoidance between agents should be considered. Preventing collision separately, using vision-based
techniques, is a challenging problem for the realization of the formation control law proposed in this paper. Another
research direction could proceed along obtaining feasibility conditions for formations in higher dimensional spaces.
Finally, it is hoped that the findings in this paper will lead to further results on bearing-only formation control over more
general directed graphs.

ACKNOWLEDGEMENTS

The work of M. H. Trinh and H.-S. Ahn was supported by the National Research Foundation of Korea under grant
NRF-2017R1A2B3007034.

The work of D. Mukherjee and D. Zelazo was supported in part at Technion-Israel Institute of Technology through a
fellowship of the Israel Council for Higher Education and the Israel Science Foundation (grant 1490/1).

ORCID

Minh Hoang Trinh http://orcid.org/0000-0001-5736-6693
Dwaipayan Mukherjee https://orcid.org/0000-0001-6993-9305

 10991239, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.3921 by T

echnion-Israel Institution O
f T

echnology, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://orcid.org/0000-0001-5736-6693
http://orcid.org/0000-0001-5736-6693
https://orcid.org/0000-0001-6993-9305
https://orcid.org/0000-0001-6993-9305


TRINH ET AL. 1095

Daniel Zelazo http://orcid.org/0000-0002-2931-245X
Hyo-Sung Ahn http://orcid.org/0000-0002-7939-0093

REFERENCES
1. Hendrickx JM, Anderson BDO, Delvenne JC, Blondel VD. Directed graphs for the analysis of rigidity and persistence in autonomous agent

systems. Int J Robust Nonlin Control. 2007;17:960-981.
2. Krick L, Broucke L, Francis B. Stabilization of infinitesimally rigid formations of multi-robot networks. Int J Control. 2009;82(3):423-439.
3. Cao M, Morse AS, Yu C, Anderson BDO, Dasgupta S. Maintaining a directed, triangular formation of mobile autonomous agents. Commun

Inf Syst. 2011;11(1):1-16.
4. Oh KK, Ahn HS. Formation control of mobile agents based on inter-agent distance dynamics. Automatica. 2011;47:2306-2312.
5. Sun Z, Mou S, Anderson BDO, Cao M. Exponential stability for formation control systems with generalized controllers: a unified approach.

Syst Control Lett. 2016;93(5):50-57.
6. Oh KK, Park MC, Ahn HS. A survey of multi-agent formation control. Automatica. 2015;53:424-440.
7. Bishop AN, Basiri M. Bearing-only triangular formation control on the plane and the sphere. Paper presented at: 18th Mediterranean

Conference on Control and Automation; 2010; Marrakesh, Morocco.
8. Bishop AN, Shames I, Anderson BDO. Stabilization of rigid formations with direction-only constraints. Paper presented at: Proceedings

of the 50th Conference on Decision and Control (CDC) & European Control Conference (ECC); 2011; Orlando, FL.
9. Schoof E, Chapman A, Mesbahi M. Bearing-compass formation control: a human-swarm interaction perspective. Paper presented at:

Proceedings of the American Control Conference; 2014; Portland, OR.
10. Bishop AN, Deghat M, Anderson B, Hong Y. Distributed formation control with relaxed motion requirements. Int J Robust Nonlin Control.

2015;25(17):3210-3230.
11. Trinh MH, Ko GH, Pham VH, Oh KK, Ahn HS. Guidance using bearing-only measurements with three beacons in the plane. Control Eng

Pract. 2016;51:81-91.
12. Basiri M, Bishop AN, Jensfelt P. Distributed control of triangular formations with angle-only constraints. Syst Control Lett.

2010;59(2):147-154.
13. Zhao S, Lin F, Peng K, Chen BM, Lee TH. Distributed control of angle-constrained cyclic formations using bearing-only measurements.

Syst Control Lett. 2014;63:12-24.
14. Zhao S, Zelazo D. Bearing rigidity and almost global bearing-only formation stabilization. IEEE Trans Autom Control.

2015;61(5):1255-1268.
15. Zelazo D, Giordano PR, Franchi A. Bearing-only formation control using an SE(2) rigidity theory. Paper presented at: Proceedings of the

54th IEEE Conference on Decision Control; 2015; Osaka, Japan.
16. Schiano F, Franchi A, Zelazo D, Giordano PR. A rigidity-based decentralized bearing formation controller for groups of quadrotor

UAVs. Paper presented at: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots Systems (IROS 2016); 2016;
Daejeon, Korea.

17. Michieletto G, Cenedese A, Franchi A. Bearing rigidity theory in SE(3). Paper presented at: Proceedings of the 55th IEEE Conference on
Decision and Control; 2016; Las Vegas, USA.

18. Eren T. Formation shape control based on bearing rigidity. Int J Control. 2012;85(9):1361-1379.
19. Trinh MH, Oh KK. Angle-based control of directed acyclic formations with three-leaders. Paper presented at: Proceedings of the 2014

IEEE International Conference on Mechatronics Control (ICMC); 2014; Jinzhou, China.
20. Trinh MH, Oh KK, Jeong KM, Ahn HS. Bearing-only control of leader first follower formations. Paper presented at: Proceedings of the

14th IFAC Symposium on Large Scale Complex Systems: Theory & Application; 2016; Riverside, CA.
21. Zhao S, Zelazo D. Bearing-based formation stabilization with directed interaction topologies. Paper presented at: Proceedings of the 54th

IEEE Conference on Decision and Control; 2015; Osaka, Japan.
22. Zhao S, Zelazo D. Translational and scaling formation maneuver control via a bearing-based approach. IEEE Trans Control Netw Syst.

2015;PP(99):1-10. early access.
23. Mukherjee D, Trinh MH, Zelazo D, Ahn HS. Bearing-only cyclic pursuit in 2-D for capture of moving target. Paper presented at: 57th

Israel Annual Conference on Aerospace Sciences; 2017; Israel.
24. Trinh MH, Mukherjee D, Zelazo D, Ahn HS. Planar bearing-only cyclic pursuit for target capture. Paper presented at: Proceedings of the

19th IFAC World Congress; 2017; Toulouse, France.
25. Marshall JA, Broucke ME, Francis BA. Formations of vehicles in cyclic pursuit. IEEE Trans Autom Control. 2004;49(11):1963-1974.
26. Mukherjee D, Zelazo D. Robustness of heterogeneous cyclic pursuit. Paper presented at: Proceedings of the 56th Israel Annual Conference

on Aerospace Sciences; IEEE; 2016; Tel Aviv and Haifa, Israel.
27. Mukherjee D, Ghose D. Generalization of deviated linear cyclic pursuit. Paper presented at: Proceedings of the American Control

Conference; IEEE; 2013; Washington DC, USA.
28. Mukherjee D, Ghose D. Deviated linear cyclic pursuit. Proc R Soc A. 2015;471(2184):20150682.
29. Park MC, Ahn HS. Stabilisation of directed cycle formations and application to two-wheeled mobile robots. IET Control Theory Appl.

2015;9:1338-1346.

 10991239, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.3921 by T

echnion-Israel Institution O
f T

echnology, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://orcid.org/0000-0002-2931-245X
http://orcid.org/0000-0002-2931-245X
http://orcid.org/0000-0002-7939-0093
http://orcid.org/0000-0002-7939-0093


1096 TRINH ET AL.

30. Fathian K, Rachinskii DI, Summers TH, Gans NR. Distributed control of cyclic formations with local relative position measurements.
Paper presented at: Proceedings of the 46th IEEE Conference on Decision and Control; 2016; Las Vegas, NV.

31. Eren T, Whiteley W, Belhumeur PN. Using angle of arrival (bearing) information in network localization. Paper presented at: Proceedings
of the 45th IEEE Conference on Decision and Control; 2006; San Diego, CA.

32. Tron R, Carlone L, Dellaert F, Daniilidis K. Rigid components identification and rigidity control in bearing-only localization using the
graph cycle basis. Paper presented at: Proceedings of the American Control Conference; IEEE; 2015; Chicago, USA.

33. Zhao S, Zelazo D. Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions. Automatica.
2016;69:334-341.

34. Mesbahi M, Egerstedt M. Graph Theoretic Methods in Multiagent Networks. Princeton, NJ: Princeton University Press; 2010.
35. Loizou SG, Kumar V. Biologically inspired bearing-only navigation and tracking. Paper presented at: Proceedings of the 46th IEEE

Conference on Decision and Control; 2007; New Orleans, LA.
36. Oh KK, Ahn HS. Formation control and network localization via orientation alignment. IEEE Trans Autom Control. 2014;59(2):540-545.
37. Montijano E, Cristofalo E, Zhou D, Schwager M, Sagues C. Vision-based distributed formation control without an external positioning

system. IEEE Trans Robot. 2016;32(2):339-351.
38. Mori T. First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. Paper

presented at: Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA); 2013; Karlsruhe, Germany.
39. Horn RA, Johnson CR. Matrix Analysis. Cambridge, United Kingdom: Cambridge University Press; 2012.
40. Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems. IEEE Trans Autom Control. 1994;39(9):1910-1914.
41. Zhao S, Sun Z, Zelazo D, Trinh MH, Ahn HS. Laman graphs are generically bearing rigid in arbitrary dimensions. Preprint: https://arxiv.

org/pdf/1703.04035.pdf.

How to cite this article: Trinh MH, Mukherjee D, Zelazo D, Ahn H-S. Formations on directed cycles with
bearing-only measurements. Int J Robust Nonlinear Control. 2018;28:1074–1096. https://doi.org/10.1002/rnc.3921

 10991239, 2018, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.3921 by T

echnion-Israel Institution O
f T

echnology, W
iley O

nline L
ibrary on [10/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://arxiv.org/pdf/1703.04035.pdf
https://arxiv.org/pdf/1703.04035.pdf
https://doi.org/10.1002/rnc.3921

	Formations on directed cycles with bearing-only measurements
	Abstract
	Introduction
	Problem Formulation and the Proposed Control Law
	Problem formulation
	The bearing-only control law

	The Directed Cycle Formation in the Plane
	The three-agent formations
	The n-agent formations

	The Triangular Formation in the Three-Dimensional Space
	Preliminary results
	The dynamical model
	Stability analysis
	The n-agent case

	Simulations
	Simulation 1: A three-agent formation in R2
	Simulation 2: A six-agent formation in R2
	Simulation 3: A three-agent formation in R3

	Conclusions
	References


